Divergent signaling via SUMO modification: potential for CFTR modulation.
نویسندگان
چکیده
The cystic fibrosis transmembrane conductance regulator (CFTR) is generally responsible for the cAMP/PKA regulated anion conductance at the apical membranes of secretory epithelial cells. Mutations in CFTR underlie cystic fibrosis (CF), in which the most common variant, F508del, causes protein misfolding and its proteasome-mediated degradation. A new pathway that contributes to mutant CFTR degradation is mediated by the small heat shock protein, Hsp27, which cooperates with Ubc9, the E2 enzyme for SUMOylation, to selectively conjugate mutant CFTR with SUMO-2/3. This SUMO paralog can form polychains, which are recognized by the ubiquitin E3 enzyme, RNF4, leading to CFTR ubiquitylation and recognition by the proteasome. We found also that F508del CFTR could be modified by SUMO-1, a paralog that does not support SUMO polychain formation. The use of different SUMO paralogs to modify and target a single substrate for divergent purposes is not uncommon. In this short review we discuss the possibility that conjugation with SUMO-1 could protect mutant CFTR from disposal by RNF4 and similar ubiquitin ligases. We hypothesize that such a pathway could contribute to therapeutic efforts to stabilize immature mutant CFTR and thereby enhance the action of therapeutics that correct CFTR trafficking to the apical membranes.
منابع مشابه
Hugh Davson Distinguished Lectureship of the Cell and Molecular Physiology
Ahner A, Gong X, Frizzell RA. Divergent signaling via SUMO modification: potential for CFTR modulation. Am J Physiol Cell Physiol 310: C175–C180, 2016; doi:10.1152/ajpcell.00124.2015.—The cystic fibrosis transmembrane conductance regulator (CFTR) is generally responsible for the cAMP/PKA regulated anion conductance at the apical membranes of secretory epithelial cells. Mutations in CFTR underli...
متن کاملSIZ1-Dependent Post-Translational Modification by SUMO Modulates Sugar Signaling and Metabolism in Arabidopsis thaliana.
Post-translational modification mechanisms function as switches that mediate the balance between optimum growth and the response to environmental stimuli, by regulating the activity of key proteins. SUMO (small ubiquitin-like modifier) attachment, or sumoylation, is a post-translational modification that is essential for the plant stress response, also modulating hormonal circuits to co-ordinat...
متن کاملThe Role of the Small Ubiquitin-Related Modifier (SUMO) Pathway in Prostate Cancer
SUMO (small ubiquitin-related modifier) conjugation is a reversible three-step process of protein post-translational modifications mediating protein-protein interactions, subcellular compartmentalization and regulation of transcriptional events. Among divergent transcription factors regulated by SUMOylation and deSUMOylation, the androgen receptor (AR) is of exceptional significance, given its ...
متن کاملSmall heat shock proteins target mutant cystic fibrosis transmembrane conductance regulator for degradation via a small ubiquitin-like modifier–dependent pathway
Small heat shock proteins (sHsps) bind destabilized proteins during cell stress and disease, but their physiological functions are less clear. We evaluated the impact of Hsp27, an sHsp expressed in airway epithelial cells, on the common protein misfolding mutant that is responsible for most cystic fibrosis. F508del cystic fibrosis transmembrane conductance regulator (CFTR), a well-studied prote...
متن کاملSUMO modification negatively modulates the transcriptional activity of CREB-binding protein via the recruitment of Daxx.
Small ubiquitin-like modifier (SUMO) modification is emerging as an important control in transcription regulation. Here, we show that CREB-binding protein (CBP), a versatile transcriptional coactivator for numerous transcription factors in response to diverse signaling events, can be modified by SUMO-1 at lysine residues 999, 1034, and 1057 both in vitro and in vivo. Mutation of the SUMO accept...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Cell physiology
دوره 310 3 شماره
صفحات -
تاریخ انتشار 2016